
How is probability defined?
Classical: number of ways an event can occur

total number of outcomes , assuming that all outcomes are equally likely
Relative Frequency: limiting proportion of times an event occurs in a long series of repetitions
of an experiment
Subjective Probability: how sure a rational person is that an event will happen

What is probability?
The theory of probability makes it possible to describe and quantify uncertainty



Sample spaces and Probability
Probability is defined on an event resulting from a single trial of an experiment
We denote events A and the probability of events P(A) ∈ [0, 1]

The sample space S is the set of all possible outcomes of the experiment
The sample space can be discrete (bijective with N) or non-discrete (continuous)

An event A ⊆ S is a subset of the sample space
A simple event is a single element of the sample space
Compound events contain more elements

Set notation
x ∈ A if the outcome x is in the event A
Union: A ∪ B = {x ∣ x ∈ A ∨ x ∈ B}

This corresponds to or  (event A or event B) as long as the union is disjoint
Intersection A ∩ B = {x ∣ x ∈ A ∧ x ∈ B}

This corresponds to and

Complement Ā = {x ∈ S, x ∣ x ∉ A}

This corresponds to not

The empty event corresponds to the empty set ∅

Probability Definitions
If S is discrete, we can assign probabilities to each outcome P(ai) such that

0 ≤ P(ai) ≤ 1

∑
i

P(ai) = 1

In this case, the set of all P(ai) is a probability distribution on S
This doesn't say anything about what the values actually are, but questions will use
values we are familiar with (i.e. the probability of a coin toss landing on heads is 0.5)

The probability of an event is the sum of the probabilities of the individual outcomes that
make it up

Elementary facts about probability functions

P(∅) = 0

If A1, A2, … An are disjoint events, then the probability of their union is the sum of their
probabilities



P(Ā) = 1 − P(A)

Odds
The odds in favor of an event is the probability that it occurs over the probability that it

doesn't: 
P(A)

1 − P(A)

The odds against is the reciprocal of this expression



It is useful to think of probability in terms of number of ways an event can happen over the
number of possible outcomes

This assumes that S is equally likely
Note that P(S) = 1

Addition rule
If A and B are disjoint events, |A ∪ B| = |A| + |B|

Otherwise, |A ∪ B| = |A| + |B| − |A ∩ B| (inclusion-exclusion again)
These are really the same rule; A and B being disjoint implies |A ∩ B| = 0

Multiplication Rule
If there are p ways to do thing 1 and q ways to do thing 2, there are pq ways to do things 1
and 2 in succession

Counting arrangements and permutations
A permutation of size k of n objects is an ordered subset of the k objects

This is equal to n!

(n − k)!

Notation: n(k)

Applies when we select objects without replacement (i.e. pick k objects from n objects)
If we select with replacement (repetition), there are actually nk choices
There are n! ways to arrange n unique objects

Arrangements where symbols are repeated

Here, we must compensate for identical symbols by dividing by the number of ways the
symbols can be picked

If there are k identical symbols of a certain type, there are k! ways to pick a particular
arrangement

In general, if there are n objects with k types, where there are c1 objects of type 1, c2

objects of type 2 (etc.), there are n!

c1!c2! … ck!
 distinguishable arrangements of the n

objects

Counting combinations



(n

k
) =

n(k)

k!
=

n!

(n − k)!k!

Combinations are the non-ordered equivalent of permutations; order does not matter
As such, we compensate for the number of ways the same set of objects can be ordered

Useful series and sums

Finite Geometric Series: 
n−1

∑
i=0

ti = 1 + t + t2 + ⋯ + tn−1 =
1 − tn

1 − t
 where t ≠ 1

Infinite Geometric Series: 
∞

∑
x=0

tx = 1 + t + t2 + ⋯ =
1

1 − t

Binomial theorem: (1 + t)n =
∞

∑
x=0

(n

x
)tx

Hypergeometric identity: (a + b

n
) =

∞

∑
x=0

(a

x
)( b

n − x
)

Strategies for counting (general)
If a restriction applies to one member of a group being selected, select that one first and
work backwards from there, even if this is not the order they are really picked in
Check for double counting: counting something twice will lead to a wrong answer
Make sure that every possible event is counted
If identical objects are being arranged, compensate for any possible ordering
See if the question is asking for an ordered or unordered subset
Do not compensate for ordering twice
If we are picking unordered groups, use a combination to calculate the sample space
instead of calculating the permutation and compensating for repetition
Split into cases where ≤ and ≥ are involved
Remove unnecessary details: instead of thinking of multiple groups (colored marbles, etc.),
replace the question with the set of numbers {1 … n}, then calculate the probability with
respect to picking the corresponding elements



Some basic principles of probability
1. P(S) = 1, since S is the set of all possible outcomes
2. For any event, A, 0 ≤ P(A) ≤ 1

3. If for events A and B we have A ⊆ B, then P(A) ≤ P(B)

De Morgan's Laws
These are the same De Morgan's Laws from logic, but they are phrased in the language of
sets instead of logic

These are easily illustrated on a Venn diagram

Inclusion exclusion rule
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Again, if A and B are disjoint, then P(A ∩ B) = ∅, so the rule becomes
P(A ∪ B) = P(A) + P(B) since P(∅) = 0 by definition
For three logical events, we must consider which intersections get double counted

We must subtract each time two sets intersect since they get counted twice
Doing this double-removes the intersection of all three sets, so we must add it back in
Thus, we get
P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)

For more than three sets, this alternating pattern continues; we must add the intersections
of 4 sets, subtract the intersection of 5, add the intersection of 6, etc.

Independence
Two events are independent ⟺  P(A ∩ B) = P(A)P(B)

I.e. the probability of one event does not change based on the outcome of another

This definition extends to more than two events if every combination of the events adheres
to the formula (possibly with more terms)

Conditional Probability

De Morgan's Laws
(A ∪ B)c = A

c ∩ B
c

(A ∩ B)c = A
c ∪ B

c



The probability of a given event may "change" if we learn more information
Ex. the probability that it will rain today vs. the probability that it will rain today given
that it is currently cloudy

The probability of A given B (where P(B) > 0) is P(A ∣ B) =
P(A ∩ B)

P(B)

Essentially, the probability of A and B happening given that B has happened
Conditional probability leads to another, more semantic definition of independence: two
events are independent if either P(A ∣ B) = P(A) or P(B ∣ A) = P(B)

This can be verified using the formula for conditional probability

Manipulating Conditional Probabilities

Conditional probability behaves the same way as regular probability:
P(A

C ∣ B) = 1 − P(A ∣ B)

If A1 and A2 are disjoint, P(A1 ∪ A2 ∣ B) = P(A1 ∣ B) + P(A2 ∣ B)

Etc.

Product rule
P(A ∩ B) = P(B)P(A ∣ B) = P(A)P(B ∣ A)

Probability of A and B happening is the probability of A times the probability of B
happening given A
This formula is very useful because it allows us to find P(B ∣ A) if we know P(A ∣ B)

Bayes Theorem
The famous Bayes theorem gives us a way to find P(A ∣ B) if we know P(B ∣ A)

P(A ∣ B) =
P(B ∣ A)P(A)

P(B)

This can be derived from the product rule

Law of Total Probability
A series of sets A1 … Ak are a partition of the sample space if every combination of these

sets is disjoint and the union of all the sets is the sample space, i.e. 
k

⋃
i=0

Ak = A

I.e. these sets are a division of the sample space

Law of total probability: P(B) = P(B ∩ A1) + P(B ∩ A2) + ⋯ + P(B ∩ Ak) =

P(B ∣ A1)P(A1) + P(B ∣ A2)P(A2) + ⋯ + P(B ∣ Ak)P(Ak)

This is commonly used with complements, since a set and its complement are a partition of
S: P(B) = P(B ∣ A)P(A) + P(B ∣ A

c)P(A
c)



Strategies
Draw a Venn Diagram

These can be used to visualize sets and their unions, intersects, and complements,
especially when these are combined to form a complicated expression
Makes it easier to solve inclusion/exclusion problems



So far, we've described sets in sample spaces to describe outcomes
Now, we might want to describe the number of times a particular outcome happens using a
variable

Ex. Let A describe the event that a coin tossed 3 times comes up heads 3 times, and
let X denote "the number of times heads comes up when a coin is tossed three times"
The, we have P(A) = P(X = 3)

However, by using a variable, we open the door to looking at P(X = 2), etc.

Random Variables
If we let X denote "the number of heads when a coin is tossed three times", we can denote
a value for X for each element of the sample space (i.e. how many heads occur)

We say that X is a random variable
We say that {0, 1, 2, 3} is the range of X

Random variable: a function that assigns a real number to each point in a sample space S
Often abbreviated RV  or rv

The range of a random variable is often denoted X(S) if X is the random variable

Discrete vs. continuous variables
Variables are discrete if their range is finite or countably infinite
Variables are continuous if their range is uncountably infinite (i.e. a non-0 range of R)

In real life, we can only measure things discretely, but it still makes sense to think of
some measurements as being continuous

Probability Functions
Let X be a random variable with range A.
The probability function of X in the discrete case is f(x) = P(X = x)

Defined for all X ∈ A

The set of pairs {(x, f(x)) ∣ x ∈ A} is the probability distribution of X.

Properties of discrete probability functions

For all x, 0 ≤ f(x) ≤ 1

∑
x∈A

f(x) = 1

Note that this is not necessary true in the continuous case



Cumulative distribution function
Sometimes, we want to know the probability of a compound event

The probability that a die roll is less than 4, for example

The cumulative distribution function is defined as F(x) = P(X ≤ x)

Tells us the probability that a variable is less than or equal to the inputted value
For discrete variables, this is a step function; for continuous probability distributions, it may
be a continuous function

Properties of CDF

1. 0 ≤ F(x) ≤ 1

2. F(x) ≤ F(y) for x < y (F(x) is a non-decreasing function)
3. lim

x→−∞
F(x) = 0, lim

x→∞
F(x) = 1

4. (If X only takes integer values) f(x) = F(x) − F(x − 1)

Distributions
Two random variables X and Y  have the same distribution if their cumulative distribution
function is the same for every input

This is denoted X ∼ Y

Example: coin is heads and die roll is even

Discrete Uniform Distribution
A random variable X takes values in A = {a, a + 1, … b} where each value is equally likely

Notation: X ∼ U(a, b)

Ex. die roll is U(1, 6), coin is U(0, 1)

Since each value is equally likely, the probability of a single event happening is
1

|A|
=

1

b − a + 1

I.e. the probability function is constant at 
1

|A|

Hypergeometric Distribution
A population consists of N  objects of which r are "successful" and the remaining N − r are
"failures". Let a subset of n objects be chosen at random without replacement. The number
of successes in that subset follows the hypergeometric distribution.

Notation: X ∼ hyp(N , r, n)

Ex. the number of aces when 5 cards are drawn from a deck



We have f(x) =
(r

x
)(N−r

n−x
)

(N
n
)

, where max{0, n − (N − r)} ≤ x ≤ min{r, n}

Binomial Distribution
Bernoulli trial: experiment with probability of success p
Binomial distribution: the resulting distribution of successes if n Bernoulli trials with
success p

I.e. how many successes are observed
Notation: A ∼ Binomial(n, p)

There are two important assumptions about the binomial distribution
All trials are independent
All members of the sample share the same probability of success p

Examples:
The number of heads if a coin is flipped 10 times

We have f(x) = (n

x
)px(1 − p)n−x, where x ∈ {0 … n}

Binomial approximation of hypergeometric distribution

If r and N  are large, n is not too large, and r
N

= p ∈ [0, 1], then
X ∼ hyp(N , r, n) ≈ Binomial(n, p)

This occurs because, for really large r and N  compared to n, the draws are pretty
close to independent (since the lack of replacement won't have a large effect)

Negative Binomial Distribution
Consider an experiment in which Bernoulli trials are independently performed, each with
probability of success p, until exactly k successes are observed. The number of failures
before observing a success follows a negative binomial distribution

Notation: X ∼ NB(k, p)

Here, the number of trials is not fixed (compared to binomial distribution)
We have f(x) = (x+k−1

k−1 )pk(1 − p)x where x ∈ {0 … n}

Geometric Distribution
Special case of the negative binomial distribution where we stop after the first success

X ∼ NB(1, p)

We have f(x) = (1 − p)xp

The number of trials is not fixed (unlike the binomial distribution)



This distribution is memoryless:

Poisson Distribution

Identity: e−μ μx

x!
≈ (n

x
)px(1 − p)n−x for large n and small p

Poisson distribution: f(x) = e−μ μx

x!
 with parameter μ = np

Note that this is a legit distribution since 
∞

∑
x=0

e−μ μx

x!
= 1

Motivation

Binomial distributions can be hard to estimate (before computers) because the (n

x
) terms

could get really big with large sample spaces

It was noted that as n → ∞ and p → 0 or p → 1, f(x) → e−μ μx

x!
 where μ = np

Reminder, n is the number of trials and p is the probability of success

Poisson process
Counting the number of occurrences of an event that happens at random points in time or
space
Three assumptions must be met

The events are independent
Events do not occur in clusters (i.e. chance of two events happening in small time step
is near 0)
Events occur at uniform rate λ

P(event in (t, t + Δt)) = λΔt + o(Δt) as Δt → 0

If these are met, the setup is a poisson process

Order Notation (little o)

A function g(Δt) is o(Δt) as Δt → 0 if lim
Δt→0

g(Δt)

Δt
= 0

This is an error term that is negligible compared to Δt as it approaches 0
Let Xt denote the number of events observed up to time t. If the above conditions are met,
we have

X ∼ Poi(λ)



Ft(x) =
e−λt(λt)x

x!



Chapter 6 covers R, which is not taught in STAT 230

Summarizing Data on Random Variables
Doesn't always make sense to present every datapoint that has been gathered since the
amount of data can obfuscate any existing trends
There are statistical strategies we can use to extract "key points"

Averages

Mean: add all the data together and divide by the total number
Median: sort the data in ascending order and pick the middle element

This is also known as the expected value
Mode: the most commonly occurring item in the dataset

Expectation of a Random Variable
Let X be a discrete random variable with range A and probability function f(x) then E(X)

is the expected value of X, and is defined as E[X] = ∑
x∈A

xf(x)

This is the same as the mean of X since we have
x1 + ⋯ + xn

n
=

k1 × x1 + ⋯ + kr × xk

n
= x1

k1

n
+ ⋯ + xr

kr

n
= x1f(1) + ⋯ + xrf(r)

where all r ∈ A

We use the variable μ to refer to the mean

Winnings and net winnings

Imagine you must pay x dollars to play a game with a winning of y dollars
Your net winning is y − x dollars

Some expected value problems

You play a game where you win y dollars by rolling y on a 6-sided die. If it costs 3 dollars to
play, what are your expected net winnings?

We have E(Y ) = (−2)
1

6
+ (−1)

1

6
+ (0)

1

6
+ (1)

1

6
+ (2)

1

6
+ (3)

1

6
=

1

2

So, the expected value of the game is 50 cents
If you play the game a large number of times (n), you can expect to net n

2
 dollars

If the cost of the game were $3.50, the expect value would be 0 and you couldn't



expect to make any money in the long term

"Expected value theorem"
Let X be a discrete random variable with range(X) = A and the probability function f(x)

The expected value of some function G(x) on X is given by E[g(X)] = ∑
x∈A

f(x)g(x)

Here, g(x) is "what we get" when the event x occurs with respect to X (i.e. a particular
value)

Note that E[g(x)] ≠ g(E[x])

Ex. the expected value of the square of a random dice roll is not the same as the
square of the expected value of a random dice roll

We have E[ag(x) + b] = a × E[g(x)] + b where a and b are constants
This can be shown with properties of sums and the expected value function
This means that the expected value function E[X] is a linear operator

We also have E[g(x) + h(x)] = E[g(x)] + E[h(x)]

The sum of expected values is the same as the expected value of the sum
This still holds if g(x) is a constant function: E[g + h(x)] = E[g] + E[h(x)] = g + E[h(x)]

The expected value of a constant is simply that constant: E[g] = g

Means of Distributions
Since distributions often describe real-world events, there is value in knowing the
mean/expected value of various distributions

Binomial

If X ∼ Binomial(n, p), then X has the probability function f(x) = (n

x
)px(1 − p)n−x

So, the expected value is E[X] =
x=0

∑
n

xf(x) = ⋯ = np

So, for a binomial distribution, E[X] = μ = np

Poisson

If X ∼ Poi(μ), then X has the probability function f(x) = e−μ ux

x!
, so

E[X] =
∞

∑
x=0

xe−μ ux

x!
= μ

So, for a poisson distribution, E[X] = μ

Hypergeometric



If X ∼ hyp(N , r, n), then E[X] = n
r

N

Negative Binomial

If X ∼ NB(k, p), then E[X] =
k(1 − p)

p

Geometric

If X ∼ Geo(p), then E[X] =
1 − p

p

Variance of distributions
The expected value is our "best guess" of what the value will be, but there are many values
around it that are also fairly likely
How do we quantify how likely our expected value is?

I.e. the deviation from the mean

Absolute deviation

The mean absolute deviation is equal to the sum of the absolute differences between
each datapoint and μ

Formula: ∑
x∈S

|μ − x|

However, absolute values are hard to work with, especially when calculus is involved
The mean squared deviation is equal to the sum over (μ − x)2

This makes all the terms positive while doing away with the absolute value
Expected squared deviation: E[(x − μ)2]

Variance
The variance of X is denoted V ar(x) = E[(X − E[X])2] = E[(X − μ)2]

A useful formulation: V ar(x) = E[X 2] − E[X]2

Some properties of variance
For all random variables X, V ar(X) ≥ 0 (variance is never negative)
V ar(X) = 0 ⟺ P(X = E[X]) = 1

E[X 2] ≥ E[X]2

Larger values of V ar(X) mean that the data is more spread out around the mean

Standard Deviation



The standard deviation of a random variable X, denoted SD(X), is defined by
SD(X) = √V ar(X)

This is often used instead of variance to measure variability

Variance of Linear Transformations

Let Y = aX + b, where a and b are constants.
We have V ar(Y ) = a2V ar(X)

Adding a constant b does not affect how "spread out" the dataset is
a is squared because variance is measured in square units

Variance of common distributions

Binomial: X ∼ Bin(n, p) has variance V ar(X) = np(1 − p)

Poisson: X ∼ Poi(μ) has variance V ar(x) = λ

Hypergeometric: X ∼ hyp(N , r, n) has variance V ar(X) = n
r

N
(1 −

r

N
)(N − n

N − 1
)

Negative binomial: X ∼ NB(k, p) has variance V ar(X) =
k(1 − p)

p2

Geometric: If X ∼ Geo(p) has variance V ar(X) =
1 − p

p2
=

1

p2
−

1

p



Continuity
So far, we have discussed discrete variables
We will now be looking at continuous ranges

Ex. pick a random number in the range [0, 1]

With continuous variables, we have a theoretically infinite degree of accuracy
Because of this, the probability of any elementary event is 0

Terminology and Notation
A random variable X is said to be continuous if its range X(S) is an interval (a, b) ∈ R

X can take any value between a and b
Examples

Time
Distance
(We don't consider the Planck length or time)

We can no longer use the axiom of probability ∑
x∈[0,1]

f(x) = 1; must update it to a

continuous x by using the integral: ∫
1

0

f(x) dx = 1

Again, we cannot have a probability function (since ∀x ∈ R, f(x) = 0), we must use a
probability density function

Probability density function

A probability density function has the following properties
1. f(x) ≥ 0

2. ∫
∞

−∞
f(x) dx = 1

3. P(a ≤ X ≤ b) = ∫
b

a

f(x) dx

I.e. the probability that the function is in the range [a, b]

The probability density function (PDF) is not a probability function, but it can be used to
gain information about probabilities
Ex. A spinner is spun and lands at an angle θ. We can define its PDF as

f(x) = { . Note that this satisfies ∫
∞

−∞
f(x) dx = 1

Support of a PDF f(x) is defined as supp(f) = {x ∈ R : f(x) ≠ 0}

All values of x such that f(x) is not 0

0.25 0 ≤ x ≤ 4

0 otherwise



This is essentially a lower and upper bound on f(x) that lets you avoid integrating
between ∞ and −∞ each time an end is unbounded

Note that our previous assertion about f(x) being 0 is correct:

P(x = a) = P(a ≤ X ≤ a) = ∫
a

a

f(x) dx = 0 by the properties of integrals

Cumulative density function (continuous version)

For discrete functions, we have F(x) = P(X ≤ x)

For continuous functions, the CDF is defined as F(x) = ∫
x

−∞

f(u) du

By the fundamental theorem of calculus, we have 
d

dx
F(x) = f(x), where f(x) is

continuous
The CDF more useful and less difficult to work with because it lets us easily find the
probabilities of ranges:

P(a ≤ X ≤ b) = F(b) − F(a) = ∫
b

−∞
f(x) dx − ∫

a

−∞
f(x) dx = ∫

b

a

f(x) dx

This integration is done anyway when calculating the same probability using the PDF

Approaches for finding F(X) from f(x)

Treat each piece of f(x) separately (i.e. use a step function)
Note that F(X) = 0 for every X < minimum value in the support of f(x)

Note that F(X) = 1 for every X > maximum value in the support of f(x)

For the middle, find F(x) = ∫
x

−∞
f(u) du

Percentiles and Quantiles
Let X be a continuous random variable with CDF F(x)

The pth quantile of the of X is the value q(p) such that P(X ≤ q(p)) = p

I.e. the probability that X is less than or equal to q(p)

Ex. If p is 0.9, q(p) is the value where 90% of the possible values of X are below it
The value q(p) is the 100th percentile of the distribution
If p is 0.5, then q(0.5) is the median of X

In fact, it makes sense to think about quantiles as an extension of the median,
where we look at "partitions" other than the lower half and other half

We can find a quantile by solving F(X) = p, which leads to x = q(p)

Change of Variables



What if we wanted to find the CDF or PDF of some function g(x) of x
We "solve" the whole equation in order to write it in terms of x
Ex. P( 1

x ≤ y) → P(x ≥ 1
y ) → 1 − P(x < 1

y ) → 1 − FX( 1
y )

Algorithm for change of variables (where y = g(x))
1. Write the CDF of Y  as a function of X

FY (y) → P(Y ≤ y) → P(g(X) ≤ y)

2. Use FX(x) to find FY (y). We can differentiate this if we want to find the PDF of Y ,
FY (y)

3. Find the range of values of y

Expectation and Variance
For discrete random variables, the expectation is E[g(x)] = ∑

x∈Z

g(x)f(x)

Similarly, for continuous random variables, we have E[g(x)] = ∫
∞

−∞
g(x)f(x) dx

When g(x) = x, we have E[x] = ∫
∞

−∞
xf(x) dx

Thus, we have V ar(X) = E[(X − E[X])2] = ∫
∞

−∞
(x − E[X])2f(x) dx

We still have the shortcut for computing variance: V ar(x) = E[X 2] − E[X]2

Sometimes, σ2 is used to represent V ar(x), so we have σ2 = E[X 2] − μ

Distributions for continuous variables

Continuous uniform distribution
X has a continuous uniform distribution on (a, b) if any interval of the same fixed length
has the same probability

Since it is a continuous distribution, any specific number still has probability 0

X has the PDF f(x) =

X has the CDF f(x) =

This is denoted X ∼ U(a, b)

We have E[X] =
a + b

2
 and V ar(x) =

(b − a)2

12

Exponential Distribution (aka. power law)

⎧⎪⎨⎪⎩ 1

b − a
x ∈ (a, b)

0 otherwise

⎧⎪⎨⎪⎩0 x < a

∫
x

a

1

b − a
du =

x − a

b − a
a ≤ x ≤ b

1 x > b



X ∼ exp(θ =
1

λ
) is defined by its PDF

X has the CDF F(x) = 1 − e−λx = 1 − e− x
θ

X has the PDF f(x) = λe−λx =
e− x

θ

θ
=

1

θ
e− x

θ  for x > 0, 0 otherwise

Here, λ is the same rate as in the poisson process

We have E[X] = θ and V ar(x) = θ2, which can be found using the gamma function
Motivation

Imagine a situation where cars passing an intersection follow a poisson process. What
is the distribution of the time until the first car passes?
We have the CDF as F(x) = P(X ≤ x) = 1 − P(X > x) =
1 − P(no event occurs in (0,x)) = 1 − P(Yx = 0), where Yx ∼ Poi(λt). This leads to our
CDF

Alternate parameterization: θ =
1

λ
 is the scale parameter

So the CDF is F(x) = 1 − e− x
θ  and the PDF is F(x) =

e− x
θ

θ

Survivor function: The complement of the CDF e− x
θ  is an often used form

Memoryless property: The amount of events that have already happened is not present
The geometric distribution is also memoryless

Continuous analog to the geometric distribution

Gamma Function

The gamma function Γ(x) is defined as Γ(α) = ∫
∞

0
yα−1e−y dy = (α − 1)! as defined for N

for all α ≥ 0 ∈ R

We can use its properties to solve some integrals related to probabilities
Example: expected value of exponential distribution

Example

A battery range of a car is on average 15000km with an exponential distribution. What is
the chance that a 1000km trip can be completed without needing a battery replacement

So, P(X > 1000) where X ∼ exp(15000)

P(X > x) = 1 − e− x
θ ⟹ P(X ≤ x) = e− x

θ

So, answer is e− 1000
15000 = 0.936 …

Computer-Generated Random Numbers
Computers can generate pseudo-random numbers: U ∼ U(0, 1)

We can simulate any distribution using this



Let F −1(x) denote the inverse CDF defined on (0, 1), where F  and F −1 are continuous
F −1(U = (0, 1)) has the same distribution (and thus CDF, PDF) as X, namely F(x)

What if F  is not continuous:
We can used a generalized inverse: F −1(u) = inf {x,F(x) ≥ u}

Here, infimum (inf) is the highest lower bound of the set
Inverse Transform Sampling Theorem: If U ∼ U(0, 1), then the random variable X
defined by the transformation X = F −1(U) has cumulative distribution function F(x)

Normal Distribution
X follows a normal distribution (aka a gaussian distribution) with a mean μ and

variance σ2 if the PDF of X is f(x) =
1

√2πσ2
e

−(x−μ)2

2σ2  where x ∈ R

We say X ∼ N(μ,σ2) or X ∼ G(μ,σ)

Standard normal distribution N(0, 1) is often used

This has PDF φ(x) =
1

√2π
e

−x2

2  and CDF ϕ(x) = ∫
x

−∞

1

√2π
e

−y2

2 dy

A distribution X ∼ N(μ,σ2) can be normalized as such: Z =
X − μ

σ
∼ N(0, 1)

Properties of the normal distribution
1. Symmetric about the mean μ: P(X ≤ μ − t) = P(X ≥ μ + t) where t ∈ R

2. There is a single peak at μ
3. Parameters are the mean μ and variance σ

Describes many natural phenomena (and useful for generative art); possibly the most
important distribution
Continuous analog to the binomial distribution



So far, we've only used univariate distributions: distributions that measure one variable
Multivariate distributions are measurements of multiple random variables or repeated
measurements of the same quantity

Joint Probability
Let X and Y  be discrete random variables with the same sample space

X and Y  don't necessarily have to have the same range
The joint probability function of X and Y  is
f(x, y) = P(X = x, Y = y) = P({X = x} ∩ {Y = y}), x ∈ X(S), y ∈ Y (S)

Ex: the joint probability of two die rolls in succession X and Y  is 
1

36

Properties of Joint Probability

Properties of multivariate probability functions (same as univariate ones)
1. 0 ≤ f(x, y) ≤ 1

2. ∑
x,y

f(x, y) = 1

Like always, computing joint probability involves adding up all the possible outcomes
P((X, Y ) ∈ A) = ∑

(x,y)∈A

f(x, y)

Marginal Probability

Let discrete X, Y  have probability function f(x, y). The marginal probability function of X
is fX(x) = P(X = x) = ∑

y∈Y (S)

f(x, y). We also have fY (y) = P(Y = y) = ∑
x∈X(S)

f(x, y)

Independence of joint probabilities

Discrete X and Y  with probability function f(x, y) and marginal probability functions fX(x)

and fY (y) are independent iff f(x, y) = fX(x) × fY (y) for all x ∈ X(S) and y ∈ Y (S)

Alternate formulation: P(X = x, Y = y) = P(X = x) × P(Y = y) for all x and y

Extension to more variables: discrete X1, X2, … Xn with probability function f(x1, x2, … xn)

are independent iff f(x1, x2, … xn) = f(x1) × f(x2) × ⋯ × f(xn) =
n

∏
k=1

f(xk)

Conditional joint probability



The conditional probability function of X given Y = y is denoted

fx∣y(x ∣ y) = P(X = x ∣ Y = y) = 
P(X = x, Y = y)

P(Y = y)
=

f(x, y)

fY (y)

fy∣x(y ∣ x) can be similarly defined

Multinomial Distribution
Sometimes experiments have more than 2 outcomes

Ex. roulette game (
9

19
 of red winning, 

9

19
 of black winning, 

1

19
 of house winning)

Example question: what is the chance of a sequence of roulette games being RRRRBBBBHH
?

Answer: 10!

4!4!2!
( 18

38
)

4

( 18

38
)

4

( 2

38
)

2

Properties of multinomial distribution with parameters k and p1 … pk

1. Individual trials are independent and have k possible outcomes where the sum of each
trial's probability is 1 (p1 + ⋯ + pk = 1)

2. There are n trials and the total number of outcomes is n = X1 + … Xk, where each Xi

a possible outcome with probability pi

We have

f(x1, … xk) =
n!

x1! × x2! × ⋯ × xk!
(px1

1 × px2

2 × ⋯ × pxk

k ) =
n!

x1! × x2! × ⋯ × xk!

k

∏
i=0

pxi

i

We also have Xi ∼ Binomial(n, pi) and Xi + Xk ∼ Binomial(n, pi + pk)

I.e. their marginal distribution is a binomial distribution
Example: A bag contains 5 red, green marbles and 10 blue marbles. 6 are drawn from the
bag with replacement. What is the probability that we draw two of each marble?

Expected Value
Let X and Y  be jointly distributed random variables with probability function f(x, y). Then
for some g : R2 → R, E[g(X, Y )] =∑

(x,y)

g(x, y)f(x, y)

This applies to the general case: E[g(X1, … , Xn)] = ∑
(x1,…,xn)

g(x1, … , xn)f(x1, … , xn)

E[X] is still linear: E[X + Y ] = E[X] + E[Y ]

Covariance
If X and Y  are jointly distributed, then Cov(X, Y ) denotes the covariance between X and
Y .
It is defined by Cov(X, Y ) = E[(X − E[X]) × (Y − E[Y ])]



Easier formula: Cov(X, Y ) = E[XY ] − E[X] × E[Y ]

Covariance is
Positive if Y  increases as X increases
Negative if Y  decreases as X increases

The larger the number, the stronger the relationship between the two variables is
If X and Y  are independent, then Cov(X, Y ) = 0 since in this case E[XY ] = E[X] × E[Y ]

However, a covariance of 0 does not necessarily imply independence

Variance and Covariance Identities

Cov(X, X) = V ar(x)

V ar(aX + bY ) = a2V ar(X) + 2abCov(X, Y ) + b2V ar(Y )

If X and Y  are independent
Cov(X, Y ) = 0, so
V ar(X + Y ) = V ar(X − Y ) = V ar(X) + V ar(Y )

V ar(
n

∑
i=1

aiXi) =
n

∑
i=1

ai
2σi

2

Correlation

The correlation of X and Y  is denoted corr(X, Y ) and is defined by ρ =
Cov(X, Y )

SD(X) × SD(Y )
,

where −1 ≤ ρ ≤ 1

Correlation measures the strength of the linear relationship between X and Y
The linear relationship is

Positive if ρ ≈ 1

Negative if ρ ≈ −1

Nonexistent if ρ ≈ 0. This doesn't mean there is no relationship between X and Y , just
not a linear one

Essentially a normalized version of the covariance

Linear Combinations of Random Variables
Let X1 … Xn be jointly distributed random variables with joint probability function
f(x1, … , xn).

Linear Combination: a1X1 + ⋯ + anXn =
n

∑
i=1

aiXi where a1, … , an ∈ R

Common Linear Combinations



Total: T =
n

∑
i=1

Xi, where ai is 1

Sample mean: X̄ =
n

∑
i=1

1

n
Xi, where ai =

1

n

We also have E[X̄] = μ and V ar(X̄) =
σ2

n

So, variability decreases with the number of samples taken into account

Finally, X̄ ∼ N(μ,
σ2

n
)

Expected value: E [
n

∑
i=1

ai] =
n

∑
i=1

aiE[Xi]

Linear Combinations of Normally Distributed Variables
Let X ∼ N(μ, σ2) and Y = aX + b. Then, Y ∼ N(aμ + b, a2σ2)

If we have X ∼ N(μ1, σ2
1) and Y ∼ N(μ2, σ2

2), then aX + bY ∼ N(aμ1 + bμ2, a2σ2
1 + b2σ2

2)

I.e. the linear combination of independent, normally distributed random variables is
also a normal distribution

General case: 
n

∑
i=1

aiXi ∼ N(
n

∑
i=1

aiμ,
n

∑
i=1

a2
i σ2

i )

When ai = 1, we have 
n

∑
i=1

Xi ∼ N(nμ, nσ2)

Indicator Random Variables
Let A ⊂ S be an event. 𝟙A is the indicator random variable of the event A and is defined

by 𝟙A(ω) = {

These are also called Bernoulli Random Variables

We have E[𝟙A] = P(A) and V ar(𝟙A) = P(A)(1 − P(A))

We have Cov(𝟙A, 𝟙B) = P(A ∩ B) − P(A)P(B)

Solving complex sounding problems
The weights of male and female geese follow the normal distributions M and F
respectively. What is the probability that the female goose is heavier if two geese are
selected at random?

We want P(F > M) = P(F − M > 0)

1 ω ∈ A

0 ω ∈ Ā ⟺ ω ∉ A



F − M is a linear combination, so we can find its distribution, then calculate the
probability



Central Limit Theorem
If X1 …Xn are independent random variables from the same distribution, with mean μ and

variance σ2, then as n → ∞, then the distribution of Sn =
n

∑
i=1

Xi approaches the shape of

the probability density function of N(nμ,nσ2)

Consequence: X̄ approaches N(μ,σ2)

If X1 …Xn are normal with Xi ∼ N(μ,σ2), then X̄ =
1

n

n

∑
i=1

Xi ∼ N(μ,
σ2

n
)

Steps in a central limit problem

1. Verify the required assumptions
Random variables are independent
Random variables have the same mean and variance

2. Identify the mean μ and variance σ2

3. Apply the CLT and probability rules to obtain the solution

Guidelines for using the CLT

Regular distribution: more than 30+ observations
Close to unimodal, relatively symmetric, close to being continuous: 5-15+ observations
Highly Skewed, very discrete: 50+ observations

Normal approximation to binomial

If X ∼ Binomial(n, p), then for large n, the random variable W =
X − np

√np(1 − p)
 has

approximately a N(0, 1) distribution.

Continuity Correction

Central Limit Theorem

If X1 …Xn are independent random variables with mean μ and variance σ2, then as

n → ∞, the CDF of the sum X1 + ⋯ + Xn approaches 

n

∑
i=1

Xi − nμ

σ√n
=

Sn − nμ

σ√n



When using the normal approximation to the binomial, we are approximating a discrete
distribution with a continuous one using the CLT
This leads to an error factor because an extra discrete "bucket" is counted when using an
inequality (for the continuous one, the range just stops there)

I.e. we have to account for the "buckets"
To correct it, add and subtract 0.5 from both the right and left of an inequality respectively:

For P(a ≤ X ≤ b), compute P(a −
1

2
≤ X ≤ b +

1

2
)

For P(X < b), compute P(X < b −
1

2
)

For P(X = x), compute P(x −
1

2
≤ X ≤ x +

1

2
)

Normal Approximation to Poisson

If X ∼ Poisson(μ), then the CDF of Z =
X − μ

√μ
 approaches that of N(0, 1) as n → ∞

Motivation: P(X > μ) (the CDF) using the normal approximation is

P(X > μ) = P(
X − μ

√μ
>

μ − μ

√μ
) = P(Z > 0); since Z ∼ N(0, 1), this is the

approximation

We still have to remember to use the continuity correction

Moment Generating Functions
In addition to the PDF and CDF of a distribution, there is a third function that uniquely
determines a distribution: the moment generating function
The MGF is given by MX(t) = E[etX], t ∈ R

If X is discrete with PF f(x), then we have MX(t) =
∞

∑
x=0

etxf(x), t ∈ R

If X is continuous with PDF f(x), then we have MX(t) = ∫
∞

−∞
etxf(x) dx, t ∈ R

Properties of MGF

1. MX(t) = 1 + tE[X] +
t2E[X 2]

2!
+

t3E[X 3]

3!
+ …

I.e. there is a Taylor-ish expansion

2. If MX(t) is defined in the neighborhood of t = 0, then 
d

dtk
MX(0) = E[Xk]

I.e. we can find the kth moment of the distribution by taking the derivative

Uniqueness Theorem



Let X and Y  have MGFs MX(t) and MY (t). If MX(t) = MY (t) for all t, then X and Y  have
the same distribution

MGFs of common distributions

Name Dist. Moment Generating Function

Normal X ∼ N(μ,σ2) MX(t) = etμ+ t2σ2

2

Poisson X ∼ Poi(λ) MX(t) = eλ(et−1)

Binomial X ∼ Binomial(n, p) (1 − p + pet)n

Multivariate Moment Generating Functions
Let X and Y  be independent distributions with moment generating functions MX(t) and
MY (t). Then, the MGF of X + Y  is MX(t) × MY (t)

This follows from the properties of exponents
This generalizes to more than 2 distributions

This result can be used to prove the central limit theorem!


